Core promoter elements and TAFs contribute to the diversity of transcriptional activation in vertebrates.
نویسندگان
چکیده
Gene-specific transcriptional activation is a multistep process that requires numerous protein factors and DNA elements, including enhancers and the core promoter. To investigate the roles of core promoter elements in transcriptional activation in vertebrates, we examined expression and factor occupancy on representative promoters in chicken DT40 cells containing a conditional TATA binding protein (TBP)-associated factor 9 allele (TAF9). Characterized core elements, including TATA box-flanking regions and the downstream promoter element, were found to play significant roles in determining promoter strength, response to activators, and factor occupancy and recruitment. The requirement for TAF9 was found to be highly promoter specific, and TAF9 dependence and promoter occupancy were not always correlated. We also describe contrasting examples of factor recruitment and activation mechanisms at different promoters, highlighted by the nearly opposite mechanisms utilized by the simian virus 40 enhancer and p53. With the core promoters analyzed, the former functions by facilitating RNA polymerase II (RNAP II) recruitment to a preassembled TBP/TFIIB-containing scaffold and p53 strongly recruits TBP and TFIIB while RNAP II levels remain modest. Taken together, our results illustrate both the important roles of core promoter elements and the remarkable diversity that characterizes transcriptional activation mechanisms in vertebrates.
منابع مشابه
Transcriptional Activation in Vertebrates Contribute to the Diversity of Core Promoter Elements and TAFs
متن کامل
Selective Recruitment of TAFs by Yeast Upstream Activating Sequences Implications for Eukaryotic Promoter Structure
The general transcription factor TFIID is composed of the TATA box binding protein (TBP) and multiple TBP-associated factors (TAFs). In yeast, promoters can be grouped into two classes based on the involvement of TAFs. TAF-dependent (TAF(dep)) promoters require TAFs for transcription, and TBP and TAFs are present at comparable levels on these promoters. TAF-independent (TAF(ind)) promoters do n...
متن کاملBinding of TAFs to core elements directs promoter selectivity by RNA polymerase II
The mechanisms that govern core promoter recognition and basal transcription efficiency remain poorly understood. Here, we have assessed the potential role of TAFs and the TFIID complex in directing basal promoter function. Reconstituted transcription reactions revealed the ability of TFIID versus TBP to discriminate between distinct core promoters. A comparison of different partial TBP-TAF ass...
متن کاملTranscriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter
HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...
متن کاملActivation and repression mechanisms in yeast.
In eukaryotes, gene expression depends on activator proteins that bind enhancer elements and stimulate transcription by RNA polymerase II (pol II) (Struhl 1995; Zawel and Reinberg 1995). This general requirement for activators is inferred from numerous observations in vivo that intact promoters are much more efficiently transcribed than core promoter derivatives containing only the TATA and ini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 23 20 شماره
صفحات -
تاریخ انتشار 2003